
48

⁄
0021-9045/02 $35.00
© 2002 Elsevier Science (USA)
All rights reserved.

Journal of Approximation Theory 114, 48–56 (2002)
doi:10.1006/jath.2001.3633, available online at http://www.idealibrary.com on

On Convergence of Interpolation to Analytic Functions1

1 Supported by NNSF and RFDP of Higher Education of China.

Du Jinyuan and Liu Hua

Department of Mathematics, Wuhan University, Wuhan, Hubei, 430072,
People’s Republic of China

Communicated by Jozsef Szabados

Received July 14, 2000; accepted in revised form September 12, 2001

In the present paper, both the perfect convergence for the Lagrange interpolation
of analytic functions on [−1, 1] and the perfect convergence for the trigono-
metric interpolation of analytic functions on [−p, p] with period 2p are discussed.
© 2002 Elsevier Science (USA)

1. INTRODUCTION

The convergence for the Lagrange interpolation of analytic functions on
[−1, 1] has become a topic of intense research. A sufficiently extensive
literature on the subject is contained in [1, 2]. Until quite recently the
research on convergence for the trigonometric interpolation of periodic
analytic functions has been completely ignored, although it is well known
that for the quadrature formulas of singular integrals with Hilbert kernel it
can yield excellent results [3]. In the present paper, we first give the result
on the perfect convergence of the Lagrange interpolation for analytic func-
tions on [−1, 1], which improves an important result in [1]. Then we
discuss the perfect convergence for the trigonometric interpolation of
analytic functions on [−p, p] with period 2p. By using a good technique
we reduce the trigonometric interpolation for some special analytic func-
tions on [−p, p] with period 2p to the Lagrange interpolation for some
analytic functions on [−1, 1] and the perfect convergence theorem for the
trigonometric interpolation of analytic functions on [−p, p] with period
2p follows from this.



2. LAGRANGE INTERPOLATION

Let f be a function defined on [−1, 1] and

Pn: xn, 1 < xn, 2 < · · · < xn, n (−1 [ xn, 1, xn, n [ 1) (2.1)

be a set of n distinct points of the interval [−1, 1]. The monic polynomial
of degree n with the zeros xn, j still is denoted by Pn, i.e., Pn(x)=
<n
j=1 (x−xn, j). It is well known that the Lagrange interpolating polyno-

mial of f corresponding to the nodal set Pn takes the form of

(LPn f)(x)=C
n

j=1
f(xn, j)

Pn(x)
P −n(xn, j)(x−xn, j)

. (2.2)

Let {Pn}
.

1 be a sequence of nodal sets and || · || denote the Chebyshev
norm of a continuous function defined in [−1, 1]. If limnQ.
||f−LPn f||=0, then we say that the Lagrange interpolation of f corre-
sponding to the sequence of nodal sets Pn is convergent. We now discuss
the convergence of LPn f for the analytic functions on [−1, 1]. In what
follows, U always denotes a neighborhood of [−1, 1] and W always
denotes a closed set which contains [−1, 1]. If f is analytic on U, we then
write f ¥ A(U). If there is a neighborhood U of W such that f ¥ A(U), then
we write f ¥ A(W). In addition, we will frequently use the simple fact
below.

Lemma 2.1. Let B(x, 1+|x|)={z: |z−x| < 1+|x|}, then

U0= 0
x ¥ [−1, 1]

B(x, 1+|x|)=B(−1, 2)0 B(1, 2)= 0
x ¥ (−1, 1)

B(x, 1+|x|).

(2.3)

Proof. For each x ¥ [0, 1], if z ¥ B(x, 1+|x|) then |z−1| [ |z−x|+|1−x|
< 2, that is 1x ¥ [0, 1] B(x, 1+|x|) … B(1, 2). Conversely, for each z ¥ B(1, 2),
there is some x0 ¥ [0, 1) such that |z−x0 | < 1+|x0 | since limxQ 1 − |z−x|−
(1+|x|) < 0, that is, B(1, 2)…1x ¥ [0, 1) B(x, 1+|x|). Thus 1x ¥ [0, 1] B(x, 1+|x|)
=B(1, 2)=1x ¥ [0, 1) B(x, 1+|x|). Similarly, 1x ¥ [−1, 0] B(x, 1+|x|)=B(−1, 2)
=1x ¥ (−1, 0] B(x, 1+|x|).

Theorem 2.1. If f is analytic in the closure of U0 then limnQ.
||f−LPn f||=0 for all choices of nodal sets Pn.

Proof. Obviously there exists e > 0 such that f ¥ A(Ue ), where

Ue= 0
x ¥ [−1, 1]

B(x, 1+|x|+e)=B(−1, 2+e)0 B(1, 2+e)
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is the open. We now have [1, 4]

f(x)−(LPn f)(x)=
1
2pi

F
“Ue

Pn(x)
Pn(z)

f(z)
z−x

dz, x ¥ [−1, 1].

Notice that

:Pn(x)
Pn(z)
: [ D

n

k=1

1+|xn, k |
1+|xn, k |+e

[ 1 1
1+e/2
2n, x ¥ [−1, 1], z ¥ “Ue,

then we get ||f−LPn f||=O(1)(1+e/2)−n=o(1) as nQ..
It must be noted that Theorem 2.1 is not always true for f ¥ A[−1, 1].

References [1, 2] have shown that (Kalmàr–Walsh theorem) the Lagrange
interpolation corresponding to the sequence of nodal sets Pn is convergent
for each f ¥ A[−1, 1] if and only if the sequence {Pn}

.

1 is distributed
according to the arcsine distribution. In other words, if the Lagrange
interpolation of f ¥ A[−1, 1] is convergent for all choices of nodal sets
Pn, then f|[−1, 1] must has an analytic continuation into a sufficiently large
neighborhood of [−1, 1] where f|[−1, 1] is the restricted function of f on
[−1, 1]. In fact, U0 is the smallest one, which will be stated later in
Theorem 2.2 in detail.

Lemma 2.2. Let f be a function on [−1, 1] and analytic at the point
x0 ¥ [−1, 1], then for each n there is dn > 0, such that ||LPn f−Tnf|| <

1
n if all

nodes xn, j in Pn satisfy |xn, j−x0 | < dn, where Tnf is the Taylor polynomial of
degree (n−1) of f at the point x0. Such scheme of nodal sets Pn is called of
Taylor type at x0.

Remark 2.1. We say that f is analytic at x0 if there is a neighborhood
U(x0) of x0 such that f|[−1, 1] 5 U(x0) has an analytic continuation into U(x0).

Proof. We know that [5], Newton’s form of the operator LPn is

(LPn f)(x)=f(xn, 1)+C
n−1

j=1
f[xn, 1, xn, 2, ..., xn, j+1] D

j

k=1
(x−xn, k)

and the jth order divided differences satisfies

f[xn, 1, xn, 2, ..., xn, j+1]=
1
j!
f (j)(tn, j), ,tn, j ¥ [xn, 1, xn, j+1],

j=1, 2, ..., n−1.

From the above relations, the assertion is clear.
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Lemma 2.3. Suppose that f is defined on [−1, 1] and analytic at the
point x0 where x0 ¥ [−1, 1]. If there is a scheme of nodal sets Pn such that
both limnQ. ||f−LPn f||=0 and limnQ. ||LPn f−Tnf||=0 where Tnf is the
Taylor polynomial of degree (n−1) of f at x0, then f|[−1, 1) has an analytic
continuation into B(x0, 1+|x0 |) for x0 ¥ [−1, 0), f|(−1, 1] has an analytic
continuation into B(x0, 1+|x0 |) for x0 ¥ (0, 1] and f|(−1, 1) has an analytic
continuation into B(0, 1) for x0=0.

Proof. Clearly, limnQ. ||f−Tnf||=0. That is to say that the Taylor
series of f at x0 also converges to f(x) at each point x ¥ [−1, 1], hence it
is an analytic function on B(x0, 1+|x0 |). In other words, f|(−1, 1] has just an
analytic continuation into B(x0, 1+|x0 |) for x0 ¥ (0, 1] since (−1, 1] …
B(x0, 1+|x0 |) in this case. The other cases are treated similarly.

Remark 2.2. We point out an important special case which will be used
in the next section. Let f be an even function on [−1, 1] and analytic at
the points 0. If there is a scheme of nodal sets P2m−1 such that both
limmQ. |f(x)−(LP2m−1f)(x)|=0 for each x ¥ (−1, 1) and limmQ. ||LP2m−1f−
T2m−1f||=0 where Tnf is the Taylor polynomial of degree (n−1) of f at
the point 0, then f|(−1, 1) has an analytic continuation into B(0, 1). In fact,
we have limmQ. |f(x)−(T2m−1f)(x)|=0 for each x ¥ (−1, 1), hence limnQ.
|f(x)−(Tnf)(x)|=0 for each x ¥ (−1, 1) since f is an even function. In
exactly the same way as in the proof of Lemma 2.3, the conclusion is now
obtained.

Theorem 2.2. Suppose that f is defined on [−1, 1], analytic at −1 and
1. If limnQ. ||f−LPn f||=0 for all choices of nodal sets Pn, then f|[−1, 1] has
an analytic continuation into U0.

Proof. By Lemma 2.2 and Lemma 2.3, we know that f|(−1, 1] has an
analytic continuation into B(1, 2) and f|[−1, 1) has an analytic continuation
into B(−1, 2). This is to say that f|[−1, 1] has an analytic continuation
into U0.
In the same manner, and noticing Lemma 2.1 we also have

Theorem 2.3. Suppose that f is defined on [−1, 1] and analytic in
(−1, 1). If limnQ. ||f−LPn f||=0 for all choices of nodal sets Pn, then
f|[−1, 1] has an analytic continuation into U0.

Theorem 2.4. limnQ. ||f−LPn f||=0 for each f ¥ A(W) and all choices
of nodal sets Pn, in which case it is said that the Lagrange interpolation is
perfectly convergent for A(W), if and only if U0 … W.
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Proof. Here we only need to prove ‘‘only if.’’ If U0 ¼ W, there exists
some z0 ¥U0/W, so f(z)=1/(z−z0) ¥ A(W) ı A[−1, 1]. The proof follows
from the preceding Theorem 2.2.

3. TRIGONOMETRIC INTERPOLATION

Let

Dn: tn, 1 < tn, 2 < · · · < tn, n (−p [ tn, 1, tn, n < p) (3.1)

be a set of n distinct points of the interval [−p, p), we still use the Dn to
denote the following (semi) trigonometric polynomial

Dn(t)=D
n

j=1
sin

t− tn, j
2

. (3.2)

For functions f defined on [−p, p], we introduce the trigonometric
interpolation operator (TIO) of f corresponding to the nodal set Dn as

(TDnf)(t)=C
n

j=1
TDn, j(t) f(tn, j), (3.3)

where

TDn, j(t)=˛
Dn(t)

2D −n(tn, j)
csc

t− tn, j
2

, if n is odd,

Dn(t)
2D −n(tn, j)

cot
t− tn, j

2
, if n is even.

(3.4)

Let || · ||r denote the Chebyshev norm of a 2p–periodic continuous func-
tion on the line segment z=t+ir(−p [ t [ p, r real), in particular, write
|| · ||=|| · ||0. If the function f is a 2p-periodic analytic function on the
closed rectangular set Dr={z: |Re z| [ p, |Im z| [ r}(r > 0) then we write
f ¥ AP(Dr). In addition, write AP[−p, p]=1r > 0 AP(Dr). Let

R0=2 ln(1+`2)=2 arcsinh 1. (3.5)

Du obtained the following [3]

Theorem 3.1. If f ¥ AP(Dr) and r \ R0 then limnQ. ||f−TDnf||=0 for
all choices of nodal sets Dn.

In [6], Liu and Du obtained the following theorem.
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Theorem 3.2. limnQ. ||f−TDnf||=0 for each f ¥ AP[−p, p], iff the
sequence of the nodal sets Dn is uniformly distributed, i.e., limnQ.
n
`||Dn ||=

1
2 .

We very easily find some sequence of nodal sets Dn which is not
uniformly distributed [6]. This fact tells us that if limnQ. ||f−TDnf||=0
for each f ¥ AP(Dr) and all choices of nodal sets Dn, in which case it is said
that the trigonometric interpolation to be perfectly convergent for AP(Dr),
then r must be also restricted by some condition. In fact, the converse
theorem of Theorem 3.1 still holds.

Theorem 3.3. The trigonometric interpolation is perfectly convergent for
AP(Dr) if and only if r \ R0.

We first establish some lemmas. To do so, if f(t) is a function defined on
[−p, p], then let

fg(x)=f(2 arcsin x), x ¥ [−1, 1], (3.6)

which is called the associated function of f. A nodal set Pn={xn, 1,
xn, 2, ..., xn, n} on (−1, 1) is said to be normally symmetric if its nodes is
symmetric about 0, i.e., xn, j=−xn, n+1−j (j=1, 2, ..., n). Similarly, the
meaning of a normally symmetrical nodal set Dn={tn, 1, tn, 2, ..., tn, n} on
(−p, p) is obvious.

Lemma 3.1. fg is an even function on [−1, 1] if and only if f is an even
function on [−p, p]. The nodal set Pn={xn, 1, ..., xn, n} on (−1, 1) is
normally symmetrical if and only if the nodal set Dn={2 arcsin(xn, 1/2),
..., 2 arcsin(xn, n/2)} is normally symmetrical. In addition, ||f−TDnf||0=
||fg−LPn f

g|| if fg (f) is an even function and Pn (Dn) is normally symme-
trical.

Proof. We only prove the later statement. (LPn f
g)(−x) is also the

Lagrange interpolating polynomial of f corresponding to the nodal set Pn
since fg is even and Pn is normally symmetrical, hence (LPn f

g)(−x)=
(LPn f

g)(x). This is to say that LPn f
g is an even function. Thus, in either

case n=2m or n=2m−1 we have (LPn f
g)(x)=;m−1

j=0 ajx
2j. So, G(t)=

(LPn f
g)(sin t2) is a trigonometric polynomial of degree at most (m−1),

and G(tn, j)=fg(xn, j)=f(tn, j), therefore [3], (TDnf)(t)=(LPn f
g)(sin t2 ).

Moreover by sin(t/2) being 1−1 from [−p, p] to [−1, 1], we know
||f−TDnf||0=||fg−LPn f

g||.

Lemma 3.2. fg is analytic at the point x0 ¥ (−1, 1) if and only if f is
analytic at the point t0 ¥ (−p, p) where x0=sin(t0/2).
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Proof. Let

w=f(z)=sin
z
2
. (3.7)

It is easy to check that it maps, by 1−1, the domain {z: −p < Re z < p} to
the domain C/((−., −1] 2 [1,+.)) where C denotes the whole complex
plane. So f is biholomorphic [4]. Noticing f−1(w)=2 arcsin w for
w ¥ (−1, 1), thus X0 is a sufficiently small neighborhood of x0 iff T0 is a
sufficiently small neighborhood of t0 where X0=f(T0). Moreover, if f is
analytic at t0, namely f|[−p, p] 5 T0 has an analytic continuation F into T0,
clearly F p f−1 is just an analytic continuation of fg|[−1, 1] 5X0 into X0, this
is to say that fg is analytic at x0, and vice versa.

Lemma 3.3. Let f be an even function on [−p, p] and analytic at the
point 0. If limnQ. ||f−TDnf||=0 for each scheme of normally symmetrical
nodal sets Dn, then f|(−p, p) can be analytically extended into S(0)=
{z: |sin(z/2)| < 1}.

Proof. By Lemma 3.1 and Lemma 3.2 we know that fg is an even
function and analytic at the point 0. By using Lemma 2.2 we can construct
a scheme of nodal sets Pn such that it is of Taylor type and each Pn is
normally symmetrical. By using Lemma 3.1 and Lemma 2.3, fg|(−1, 1)
has an analytic continuation into B(0, 1). Noticing that f in (3.7) is
biholomorphic, we know that f|(−p, p) can be analytically extended into
f−1(B(0, 1))=S(0).

Proof of Theorem 3.3. We only need to prove ‘‘only if.’’ If r < R0, we
take r < r0 < R0, z0=ir0. So f(z)=(sin2 z2− sin2 z02 )

−1 ¥ AP(Dr), and clearly
z0 ¥S(0). Now the proof is obvious by Lemma 3.3.
We will carry over the result of Lemma 3.3 to the case of odd functions,

which is not too easy.

Lemma 3.4. Let f be an odd function on [−p, p] and analytic at the
point 0. If limnQ. ||f−TDnf||=0 for each scheme of normally symmetric
nodal sets Dn, then f|(−p, p) can be analytically extended intoS(0).

Proof. Step I. Let F(t)=(sin t) f(t). Then it is an even function on
[−p, p] and analytic at 0, its associated function Fg is also an even func-
tion on [−1, 1] and analytic at 0 by Lemma 3.1 and Lemma 3.2. Let
J(x)=Fg(x)/(x2−1) if −1 < x < 1 and J(±1)=0 (we may assign an
arbitrary value). By using Lemma 2.2, we may construct a scheme of nodal
sets P2m+1 such that it is normally symmetrical and of Taylor type for J at
0. Thus

lim
mQ.

||T2m+1J−LP2m+1J||=0, (3.8)

54 DU AND LIU



where TnJ is the Taylor polynomial of degree (n−1) of J at 0. We now
write those nodal sets by P2m+1={x2m, 1, ..., x2m, m, 0, x2m, m+1, ..., x2m, 2m}.

Step II. Let D2m={t2m, 1, t2m, 2, ..., t2m, 2m} where t2m, j=2 arcsin x2m, j
with x2m, j as those above. Clearly, it is normally symmetrical since P2m+1 is
normally symmetrical. Let Da

2(m+1)={−p, t2m, 1, ..., t2m, m, 0, t2m, m+1, ...,
t2m, 2m}. We show that (TD

a

2(m+1)F)(t)=sin t(TD2mf)(t) and it is an even trigo-
nometrical polynomial of degree at most (m+1). In fact, (TD

a

2(m+1)F)(t),
(TD

a

2(m+1)F)(−t) and (sin t)(TD2mf)(t) are all the trigonometric interpolating
polynomial of F corresponding to the nodal set Da

2(m+1) in HT
m+1(p/2)

[3, 7]. By Lemma 2.1 in [8] we have

(TD
a

2(m+1)F)(t)=(TD
a

2(m+1)F)(−t)=(sin t)(TD2mf)(t). (3.9)

Thus

||F−TD
a

2(m+1)F|| [ ||f−TD2mf||Q 0, as mQ.. (3.10)

For short, writing G=TD
a

2(m+1)F, then, by (3.9) G(t)=;m+1
j=0 bj cos jt. We

show easily that, for even trigonometric polynomials by the induction for
their degree m, there is an even algebraic polynomial H2(m+1) of degree at
most 2(m+1) such that H2(m+1)(sin

t
2 )=G(t). Hence H2(m+1) is no other

than the associated function Gg of G. Since z=sin(t/2) is 1−1 from
[−p, p] to [−1, 1] and by (3.10), we get

lim
mQ.

||Fg−H2(m+1) ||=0. (3.11)

Step III. Let h2m(x)=H2(m+1)(x)/(x2−1). Then it is an even
algebraic polynomial of degree at most 2m since H2(m+1)(±1)=G(±p)=
F(−p)=0, and h2m(x)=J(x) if x ¥P2m+1. Thus, we know h2m=
LP2m+1J. From (3.11) we have

lim
mQ.

|J(x)−(LP2m+1J)(x)|=0, x ¥ (−1, 1). (3.12)

Quoting Remark 2.2, by (3.8) and (3.12) we know that J|(−1, 1) has an
analytic continuation into B(0, 1). Thus Fg|(−1, 1) has an analytic continua-
tion into B(0, 1), by Lemma 3.2 F|(−p, p) has an analytic continuation into
S(0), finally f|(−p, p) has an analytic continuation into S(0).

Lemma 3.5. Let f be a 2p–periodic function and analytic at the point t0
where t0 ¥ (−p, p). If limnQ. ||f−TDnf||=0 for all choices of nodal sets Dn,
then f|(−p, p) can be analytically extended intoS(t0)={z: |sin 12 (z−t0)| < 1}.
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Proof. Case I. If t0=0, let f−(t)=f(−t), fe=
1
2 [f+f−] and

fo=
1
2 [f−f−]. Let Dn is normally symmetrical. Then (TDnf

−)(x)=
(TDnf)(−x) since they are both the trigonometric polynomial of f− in
HT
n (0) [3, 8]. Since tW −t is 1−1 from [−p, p] to [−p, p], so ||f−TDnf||=

||f−−TDnf
−||, hence ||fe−TDnfe || [ ||f−TDnf|| and ||fo−TDnfo || [ ||f−TDnf||.

Quoting Lemma 3.3 and Lemma 3.4, we know that, both fe and fo, so f
can be analytically extended into S(0).

Case II. For general x0 ¥ (−p, p), let [t]2p denote the number
congruent to t (mod 2p) in [−p, p) and let the mapping y be defined by
tW [x0+t]2p, clearly it is 1−1 from [−p, p) to [−p, p). Let F=f p y
and Dn={tn, 1, tn, 2, ..., tn, n} … [−p, p) be a nodal set. Then Da

n={tan, 1, t
a
n, 2,

..., tan, n} is also a nodal set where tan, j=y(tn, j) (j=1, 2, ..., n) and

||f−TD
a

n f||=||f p y−(TD
a

n f) p y||=||F−TDnF||.

Now the proof is obviously reduced to Case I.
From the preceding Lemma 3.5, we obtain immediately the following

Theorem 3.4. If f ¥ AP[−p, p] and limnQ. ||f−TDnf||=0 for all
choices of nodal sets Dn then f|(−p, p) has an analytic continuation into
D0={z: |Re z| < p, |Im z| < R0} with R0 given in (3.5).
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